Parallel RLC Formulas
$$
\begin{aligned}
X_L &= 2\pi fL \\
X_C &= \frac{1}{2\pi fC} \\
Z &= \frac{1}{\sqrt{(1/R)^2 + (1/X_L – 1/X_C)^2}} \\
f_r &= \frac{1}{2\pi\sqrt{LC}} \\
Q &= R\sqrt{\frac{C}{L}} \\
BW &= \frac{f_r}{Q} \\
\alpha &= \frac{1}{2RC} \\
\omega_0 &= \frac{1}{\sqrt{LC}} \\
\omega_d &= \sqrt{\omega_0^2 – \alpha^2}
\end{aligned}
$$
$$ \begin{aligned} X_L &= \text{Inductive Reactance} \\ X_C &= \text{Capacitive Reactance} \\ Z &= \text{Impedance} \\ \cos\phi &= \text{Power Factor} \\ f_r &= \text{Resonant Frequency} \\ Q &= \text{Quality Factor} \\ BW &= \text{Bandwidth} \\ \alpha &= \text{Damping Factor} \\ \omega_0 &= \text{Natural Angular Frequency} \\ \omega_d &= \text{Damped Natural Frequency} \end{aligned} $$